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Abstract

Reinforcement learning (RL) framework provides experimentally justified explanations for
animal learning. On the other hand, animal learning has been extensively associated with synaptic
plasticity, which is commonly studied by employing spiking neural networks in computational
neuroscience literature. In this report, I investigate the literature that explores the relationship
between synaptic plasticity rules and the RL framework. The literature can be divided into three
parts: 1) using policy-gradient methods to analytically derive plasticity rules, 2) modulating the
STDP rule by a global reward signal, and 3) using temporal-difference learning to find plasticity
rules.
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1 Introduction

Alongside supervised and unsupervised learning, reinforcement learning is one of the fundamental

paradigms for machine learning and animal learning. In the reinforcement learning paradigm, the

system’s output elicits evaluative feedback, which can manifest as a reward, absence of reward, or

punishment -I will refer to this evaluative feedback as "reward." Reinforcement learning is characterized

by an agent’s interaction with an environment, receiving rewards, and trying to accomplish an objective

through improvement, for example trying to maximize its expected cumulative reward [1].

In supervised learning, the system’s output is compared to the true output based on a distance metric,

and the system parameters are adjusted accordingly. In reinforcement learning however, instead of

directly providing the true output and comparing it to the system’s output, the system is informed

whether its output was true or not Ðwhere the term ’evaluative’ term comes from. This characteristic

renders the reinforcement learning (RL) paradigm more versatile across various tasks compared to

supervised learning, which typically necessitates a true label for each input. RL, on the other hand,

allows for evaluative feedback to the system.

Animals can learn about the given stimuli or their actions by evaluative feedback. Reinforcement

learning framework may provide a robust and experimentally justiőed explanations for animal learning,

whether it be playing table tennis or simply walking [1]. The main goal of this report is to provide possi-

ble explanations on how reinforcement learning framework might be implemented by the brain’s wetware.

It has been commonly postulated that the changes of synaptic strength between neurons, i.e. plasticity,

is the neurophysiological basis of learning [2]. Spike patterns of the neurons and neuromodulation

(e.g. relative concentration of a neuromodulatory molecule such as dopamine) are some examples for

plasticity factors. One of the ways of studying synaptic plasticity is via spiking neural networks (SNNs)

by imitating the behaviours of biological neurons mathematically, or with simulations. In this report, I

attempt to review the literature that investigates synaptic plasticity rules in spiking neural networks

that are inspired by the reinforcement learning framework.

The structure of the essay is as follows: In section 2, I brieŕy summarize some of the different RL

paradigms that are the subject of this essay. In section 3, I outline few plasticity rules for biological

neural networks. In section 4, I present the papers that implement RL paradigms in (spiking) neural

networks. Section 4 is the core part of this report. Lastly, I conclude by section 5, discussion.

2 Reinforcement Learning Framework

The true state value (vπ(s)) under policy π is deőned by the expected value of the return, Gt, where

policy is deőned by π(a|s, θ) = Pr{At = a|St = s, θt = θ} for the probability of an action a taken at

time t given that the environment is in state s at time t with parameter θ. And the return is deőned as

expected value of the (discounted) rewards. Discount factor is denoted as γ. In episodic tasks, the last

reward value is denoted as RT , where T is the episode length. One of the goals of the RL algorithms is

to őnd a policy that maximizes the return [1].

vπ(s) = E[Gt|St = s] (1)
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Gt = Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 · · · (2)

= Rt+1 + γ(Rt+2 + γRt+3 + γ2Rt+4 · · · ) (3)

= Rt+1 + γGt+1 (4)

2.1 Value-function Approximation

Value-function approximation methods map the tabular values of states to a parameterized function,

reducing the dimensionality of the environment. The approximated (by the w) value of a state s can

be denoted by v̂(s,w) ≈ vπ(s). The approximation can be done by a linear function, or by a neural

network. For the linear case, v̂(s,w) = w
T
x(s) =

∑

i wixi(s).

Reducing the dimensionality allows this algorithm to be implemented when the states are partially

observed as well [1]. Also, since a change of a single weight would change the value of more than

one states, the algorithm also enables generalization. But this comes with a cost. Notice that for RL

algorithms that uses values, the state values are updated towards their targets. For example for Monte

Carlo update, the target value prediction is Gt. It is apparent from the approximation that őnding the

exact target values for each state is not possible. Bringing a particular state closer to its target value

will inevitably result in another state moving farther away. For that reason, introducing a parameter

which assigns an importance to each state is a good strategy. I refer the reader to the textbook [1] for

a mathematically rigorous explanation and derivation.

Assume that the target value Ut for each state is given. Updating the weights should reduce the differ-

ence between each observed state’s value and its true value. This can be done by the stochastic-gradient

method.

wt+1 = wt −
1

2
α∇[Ut − v̂(St,wt)]

2 (5)

= wt + α[Ut − v̂(St,wt)]∇v̂(St,wt). (6)

Setting the Ut to the return (Gt) would yield the Monte Carlo algorithm for value-approximation. After

approximating the value function, a greedy policy can be chosen in which the agent prefers to take

actions that leads to higher-valued states.

2.2 Policy Gradient Methods

Another approach is to directly parameterize the policy, and changing the policy parameters in order

to increase the reward.

Policy-gradient methods try to improve the performance of the agent by learning the optimum policy

parameters. Assume that the action space is discrete and not too large, then one can parameterize the

preferences of actions, denoted by h(s, a, θ). One possible policy is the exponential soft-max.

π(a|s, θ) =
eh(s,a,θ)

∑

b e
h(s,b,θ)

(7)

The parameters, θ, can be linear in features or can be computed by a neural network. They are updated
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by using gradient ascent in a performance measure J(θ). The performance measure can be chosen

in different ways, but an intuitive way of thinking about it is deőning the return as a performance

measure for episodic tasks.

θt+1 = θt + α◊�∇J(θt) (8)

The exact derivation of the policy-gradient theorem is out of the scope of this report. Here, I will only

provide the őnal REINFORCE update rule.

θt+1 = θt + αGt
∇π(At|St, θt)

π(At|St, θt)
(9)

This algorithm, along with others, will be used to derive plasticity rules for (spiking) neural networks

in Section 4.

2.3 Temporal-Difference Learning

Temporal-difference (TD) learning is one of the ways of combining the dynamic-programming (DP) and

Monte Carlo (MC) methods. DP assumes that agent has full accessibility to the environment, allowing

replacing the expected value of the return at time t+ 1 with expected value of vπ(St+1).

vπ(s) = Eπ[Gt|St = s] (10)

= Eπ[Rt+1 + γGt+1|St = s] (11)

= Eπ[Rt+1 + γvπ(St+1)|St = s] (12)

DP algorithm does not need to wait until the end of the episode since it can use vπ(St+1).

On the other hand, MC methods assumes that the agent learns about the environment only af-

ter experiencing it. Therefore, the return is only available to the agent after it őnishes the episode.

A reinforcement learning agent has no full access to the environment, it needs to experience, which

makes MC method appealing. But having to wait until the episode őnished makes the MC method

unappealing. TD learning combines part of the DP with MC, by updating the value function at each

time using the sampled (not expected) value of vπ(St+1). But since it will not hold for each iteration,

we can deőne an error.

δ(t) = Rt+1 + γv̂(St+1,wt)− v̂(St,wt) (13)

TD error can be used for value-function approximation. Note that Ut is denoted as target before, in

Equation 5 and 6. Here, Ut is replaced with the Rt+1 + γv̂(St+1,wt). Therefore Equation 6 becomes:

wt+1 = wt + αδ(t)∇v̂(St,wt). (14)

Using linear features, since ∇v̂(S,w) = x(s):

wt+1 = wt + αδ(t)x(s). (15)

I refer the reader to the textbook [1] for more explanation.

2.4 Actor-Critic Methods

Consider the REINFORCE update given in Section 2.2, and consider the Equation 9. Replacing Gt by

δ(t) simply incorporates the TD learning with policy-gradient methods. By doing that, the return is
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replaced with a ’critic’. Before, the return was informing the algorithm for action updates. Now, it is

the ’critic’, criticising the action taken. With this replacement, algorithm does not need to wait until

the end of the episode, but it needs to update the critic as well, which can be done by updating the

values. Replacing Ut by Rt+1 + γv̂(St+1,w) (which gives δ(t)) in Equation 6 simply incorporates TD

learning in value-approximation method.

Therefore TD error is used to both update the parameters of the critic and the actor. The updates for

each state for each iteration, after taking action A and observing S′ and R is as follows:

δ ← R+ γv̂(S′,w)− v̂(S,w) (16)

w← w + αwδ∇v̂(S,w) (17)

θ ← θ + αθδ
∇π(A|S, θ)

π(A|S, θ)
(18)

2.5 Eligibility Traces

In value-approximation, weights (w) can be updated proportionally to the multiplication of TD error (δ)

and derivative of the estimated value function with respect to its weights (∇v̂(S,w)). As noted before,

for the linear case, v̂(S,w)=̇w
T
x(s), therefore the ∇v̂(S,w) simply becomes x(s). Consequently, in the

linear case, the weights are updated proportionally to the current TD error and current input vectors,

when the state is visited (or when the action is taken, depending on the algorithm). But the agent can

also beneőt from by updating its weights considering the past input vectors as well. The idea behind

eligibility traces closely related with λ-return, but that perspective is not mentioned in this report. In

order to include the past input effects to the weight update, a new variable can be introduced which

keeps the track of the input vectors by applying a low-pass őlter.

z−1 = 0, (19)

zt = zt−1 + γλ∇v̂(St,wt), 0 ≤ t ≤ T. (20)

For policy-gradient methods, rather than value-function approximation, the eligibility trace would be

as following:

z−1 = 0, (21)

zt = zt−1 + γλ
∇π(At|St, θt)

π(At|St, θt)
, 0 ≤ t ≤ T. (22)

Corresponding eligibility traces can be replaced with the gradient of the value or gradient of the policy

(normalized) to get the eligibility trace-incorporated version of the algorithms presented above.

3 Plasticity Rules

In order to see the connections between RL algorithms and some plasticity rules that are widely used in

computational neuroscience, I will őrst simply introduce few plasticity rules. Although the relationship

between spike-timing dependent plasticity (STDP) and RL algorithms is more widely mentioned in this

report, I believe that mentioning other plasticity rules is also helpful to provide more insight about

Hebbian plasticity rules.

3.1 Basic Hebbian Rule

One can construct a plasticity rule that directly captures the Donald Hebb’s speculation, "When an

axon of cell A is near enough to excite cell B and repeatedly or persistently takes part in őring it, some
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growth process or metabolic change takes place in one or both cells such that A’s efficiency, as one of

the cells őring B, is increased." [3].

△wij = f1(prej)f2(posti) (23)

The weight change captures the correlation between the function of pre-synaptic neuron activity

(f1(prej)) and post-synaptic neuron activity (f2(posti)) [2]. The form of synaptic change in Equation

22 will be referred as a local plasticity rule since it only depends on the pre-synaptic and post-synaptic

neuron. See [4] for more generalized deőnition of the locality of synaptic rules.

If these two functions are linear with the activity of pre- and post-synaptic neurons, since the activity

of the neurons are positive by its deőnition, the weight can not decrease by time which makes the

plasticity rule unstable. A threshold factor for either pre- or post-synaptic neuron can be introduced

to the rule, which would allow the decrease of weight when the activity of the neuron is less then the

threshold.

3.2 BCM Rule

One famous form of Hebbian learning is BCM (Bienenstock, Cooper, and Munro) rule [5]. Note that

in case of including a threshold factor for pre-synaptic neuron, long-term depression (LTD) does not

require pre-synaptic activity, since LTD would also occur when pre-synaptic activity is 0.

τw
dw

dt
= v(u− θu), (24)

where τw is the time scale of the weight vector (w) change, v is post-synaptic neuron activity, u is the

vector for pre-synaptic neuron activities, and θu is pre-synaptic threshold.

Introducing a threshold only for the post-synaptic neuron leads to a similar problem. The BCM

rule requires both, and has substantial amount of experimental support [5]:

τw
dw

dt
= v(v − θv)u (25)

τθ
dθv
dt

= v2 − θv (26)

where τθ is the time-scale of the sliding-threshold, and θv post-synaptic threshold.

In the BCM rule, if the pre-synaptic activity is non-zero, and the post-synaptic activity exceeds

the threshold, it results in long-term potentiation (LTP); otherwise, if it is below the threshold, it leads

to LTD (Figure 1). However, the threshold itself also depends on the activity of the post-synaptic

neuron. If the post-synaptic neuron activity has been increased by the pre-synaptic activity, then the

sliding-threshold increases. Therefore when post-synaptic neuron activity is small, the area for LTP is

more than LTD (Figure 1, middle). Conversely, when the post-synaptic neuron activity is strong, then

the area of LTD is more than LTP (Figure 1, right). Therefore, the plasticity rule is intrinsically stable

as a result of the sliding threshold. I refer the reader to the BCM paper [BCM] for mathematically

rigorous explanation.
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Figure 1: BCM rule. y-axis determines the synaptic change with respect to v, post-synaptic neuron
activity. LTP for v > θv, LTD for v < θv. θv is also modulated by the post-synaptic activity v. The
őgure demonstrates that different curves during threshold shifting. Figure edited from [REWBCM].

On the other hand, the sliding-threshold also introduces synaptic competition between the synapses.

When the post-synaptic neuron activity increases due to a speciőc pre-synaptic activity, the heightened

threshold makes it more challenging for the weights of other synapses to increase. There are various

ways for introducing synaptic normalization and competition, I have only introduced BCM since there

exist a relationship between a RL algorithm as explained in Section 4.

3.3 Spike-Timing Dependent Plasticity (STDP)

Previously mentioned family of plasticity rules does not require time-dependency on pre- and post-

synaptic neurons. STDP rule states that when the pre-synaptic spike precedes post-synaptic spike,

the synaptic strength between these two neurons are increases [6], and vice versa (Figure 2). The

magnitude of the strength change depends on the relative timing of the spikes. The weight change in

given STDP rule is determined by multiplying F (△t) by a maximum weight change value.

F (△t) =

®
A+e

(△t/τ+) if △t < 0

−A−e
(−△t/τ

−
) if △t ≥ 0

(27)

where F (△t) determines the synaptic modiőcation amount, normalized by the current synaptic weight.

A+ and A− determines the synaptic update when the time interval between the spikes (△t) is equal to

zero, while t+ and t− determines the time-scales for which synaptic-change occur. There are more than

one types of STDP rules in the literature, additive and multiplicative [7] are some examples.

Figure 2: STDP rule. △t denotes pre-synaptic spike time minus post-synaptic spike time. LTP for
△t < 0 (causal part), LTD for △t ≥ 0 (anti-causal part). F (△t) determines the synaptic modiőcation
amount, normalized by the current synaptic weight. Figure from [6].
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4 Bridging the Gap

The literature that uses RL framework to implement plasticity rules for (spiking) neural networks can

be divided into 3 parts [8]. 1-) Top-down approach of directly applying the policy-gradient methods in

(spiking) neural networks. 2-) Modulating the STDP rule with a globally broadcasted reward function.

3-) Top-down approach of applying TD learning algorithm, especially using actor-critic methods. In

this report, I will be broadly mentioning the őrst two parts while just brieŕy touching the third part.

Starting with policy-gradient methods, I will initially provide a thorough introduction to two pa-

pers, as they serve as a backbone for subsequent works, and present the derivation of the plasticity rules

outlined in these papers. Subsequently, I will discuss the connections between the reward-modulated

STDP rules and the derived (using a top-down approach) plasticity rules. Finally, I will address the

őndings regarding the learning efficacy of the reward-modulated STDP rules. The BCM rule will

also be very brieŕy mentioned in the context of reinforcement learning. Afterwards, I will also brieŕy

mention the papers that used TD learning algorithms.

4.1 Applying policy-gradient methods in (spiking) neural networks

In 1999, P. L. Bartlett and J. Baxter published a paper [9] that led to a chain of publications attempting

to directly adopt a reinforcement learning algorithm, REINFORCE, for biological neural networks.

Machine learning rules are usually non-local, which is thought to be not easily biologically implementable

by the brain [10]. However, REINFORCE naturally leads to a local plasticity rule combined with a

global reward. Global reward refers to the fact that the reward signal is broadcasted to all neurons.

Local part of the plasticity rule is dependent on the activity of certain pre-synaptic and post-synaptic

neuron pair, denoted by subscripts j and i, and denoted by functions f1 and f2, and the function for

global reward is shown by f3.

△wij = f1(prej)f2(posti)
︸ ︷︷ ︸

Local

f3(reward)
︸ ︷︷ ︸

Global

(28)

The authors considered each neuron as an individual agent, where each neuron treats other neurons as

a part of its environment. Pre-synaptic neurons (input neurons) connects to post-synaptic neurons

(output neurons). The effect of each pre-synaptic spike on the certain post-synaptic neuron is determined

via the connection strengths, wj (Figure 3). Post-synaptic potential at time t is weighted sum of arrived

pre-synaptic spikes at time t− 1.

vt =
∑

j

wju
j
t−1, (29)

uj
t−1 is a binary value of the pre-synaptic neuron j at time t− 1 denoting the existence of a spike, and

vt is the membrane potential of the certain post-synaptic neuron at time t.
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Figure 3: The activity of the post-synaptic neuron is determined by its potential, which is weighted
sum of pre-synaptic spikes. Note that in the őgure time subscript is dropped. Figure from [11].

Action space is binary, where each post-synaptic neuron can take two different actions, őre or not to

őre, denoted by ut = 1 and ut = 0, respectively (Figure 3). The activity of the post-synaptic neuron

(to spike or not to spike) is determined by its potential. The policy of the neuron is parameterized by:

π(ut = 1 | vt) = Pr(ut = 1 | vt) = σ(vt) (30)

π(ut = 0 | vt) = Pr(ut = 0 | vt) = 1− σ(vt) (31)

where σ(x) = 1/(1 + ex). Although the authors referred to it as a spiking neuron, in current compu-

tational neuroscience literature, it usually would not be considered as an actual spiking neuron since

there is no threshold (adaptive or non-adaptive) that determines the spike time.

Combining the REINFORCE update (Eq. 8) with eligibility traces (Eq. 21) and referring the

parameters of the system as w, we get:

wj,t+1 = wj,t + αRt+1zj,t+1, (32)

zj,t+1 = βzj,t +

∂
∂wj

µut

µut

(33)

Taking the derivative of the policy with respect to the weights, and dividing it by the policy itself

yields:

zj,t+1 = βzj,t + (ut − σ(vt))u
j
t−1. (34)

Notice that the learning rule consist of two parts: a scalar global reward signal R which is assumed to

be broadcasting to every neuron at time t, and the local Hebbian term of (ut − σ(vt))u
j
t−1. The őrst

factor of the Hebbian term is only dependent on the post-synaptic neuron (whether it spiked or not

minus the probability of the spike), while the second factor is only dependent on the pre-synaptic neuron.

This learning rule predicts that employing a global broadcasting signal to modulate the local Hebbian

plasticity rule can be implemented for learning purposes. A closer examination of the equation reveals

that the rule predicts synaptic strengthening when a pre-synaptic neuron precedes a post-synaptic

neuron and if a positive reward is given. This contradicts with conventional STDP experiments [STDP],

as the derived rule also necessitates a reward signal for synaptic change to occur.

Interestingly, the rule enables LTD even when the pre-synaptic neuron precedes the post-synaptic

neuron, when the reward is negative. Moreover, if the pre-synaptic neuron őres, in the absence of

post-synaptic spikes (indicating a negative value for the őrst factor of local Hebbian term), LTD occurs
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with a positive reward, and LTP occurs with a negative reward. In the paper, the authors dismissed

the possibility of a negative reward. However, as proposed by other papers mentioned below, it is

biologically plausible to consider negative rewards. Theoretically, if the reward signal has a non-zero

baseline, values below the baseline can be regarded as negative rewards.

The authors provided examples from some experimental works aligning with their plasticity rule.

They noted that in those experiments, the discovered Hebbian rules were not experimentally gated by

any neurotransmitter, which would be one of the candidates for global reward broadcasting.

The update rule aligns with the direction of steepest ascent only in two distinct situations, which will

also serve as assumptions for the upcoming learning rules derived using the policy-gradient method:

1-) The actions of agents (spikes of neurons) do not have an effect on their inputs, and the re-

ward only depends on the current input. However, when considering a neural network consisting of

three partsÐinput layer, hidden network, and output layerÐthere are no restrictions on the hidden

network. The hidden network can be a recurrent network if it receives inputs from input neurons and

outputs to output neurons, provided that the output layer does not project to input neurons.

2-) Or, when the current reward only depends on the inputs after the last reward.

It is worth noting that in the original paper of REINFORCE [12], derived plasticity rule (Eq. 28 and 30)

was already mentioned. However, Bartlett and Baxter’s paper [9] introduced the idea from a biological

perspective, along with its other contributions.

In the paper, the neuron model that considered (Bernoulli unit) does not incorporate the mem-

brane dynamics, such as leak current. In the following paragraphs, I will discuss the papers that build

upon the previously mentioned paper, which tries to implement membrane dynamics as well, leading to

slights changes on the plasticity rule.

In 2003, X. Xie and H. S. Seung published a paper [11], which can be considered a follow-up to

the previously mentioned paper. In short, they concluded that the correlation between reward and

spiking ŕuctuations can be utilized as a biologically plausible learning algorithm. In another paper by

H. S. Seung in 2003 [13], similar methods were applied to derive a plasticity rule, but synapses, rather

than neurons, were considered as agents. However, since relating the plasticity rule derived in H. S.

Seung’s paper [13] to STDP is not straightforward, the őndings of this paper will not be mentioned in

this report (see [14] for yet another plasticity rule involving perturbation of conductances, similar to

the node perturbation method in machine learning).

X. Xie and H. S. Seung expanded the Bartlett and Baxter’s work by including the membrane dynamics

into their neuron model, using Poisson neurons instead of Bernoulli units. They assumed [11] that the

neurons produce Poisson spike trains with instantaneous őring rate which was determined by the total

synaptic input, which is the weighted sum of low-pass őltered pre-synaptic spikes in the network.

λi(t) = fi(Ii(t)), (35)

Ii(t) =
∑

j

wijhij(t), (36)

τs
dhij

dt
= −hij(t) +

∑

a

δ(t− fa
j )ξ

a
ij , (37)
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where λi(t) is instantaneous őring rate of the ith neuron, fi is f-I curve (Figure 4, bottom), Ii is

total synaptic current, wij is synaptic strength between neuron i and j, and hij(t) is low-pass őltered

incoming spikes (Figure 4, middle), denoted by
∑

a δ(t− fa
j ) (Figure 4, top), fa

j being the time of the

ath spike of neuron j. ξaij allows model to include dynamic synapses such as short-term plasticity but

will not be mentioned in this report for simplicity reasons.

Figure 4: Top: Incoming spikes to neuron i from neuron j. Middle: Corresponded synaptic activation,
denoted by hij(t), which is low-pass őltered version of incoming spikes. Bottom: f-I curve. Figure from
[11].

The authors show for episodic case that how their synaptic rule updates the weights for maximizing

the reward. For the assumptions they made, details of the derivation, and for dynamic synapses, I refer

the reader to the original paper [11]. Here, I will assume that we know the REINFORCE update rule

(Eq. 9), and directly őnd the term ∇π(At|St,θt)
π(At|St,θt)

.

The probability of a neuron to spike or not to spike, σi(t), can be written for each time interval

[t, t+△t) as:

σi(t) =

®
1 with probability pi(t) = λi(t)△t

0 with probability 1− pi(t)
(38)

Now, by taking the derivative of the policy and diving it by itself we get (denoted by eij in the paper):

eij =
T∑

t=0

ï
σi(t)

pi(t)
−

1− σi(t)

1− pi(t)

ò
∂pi(t)

∂wij
(39)

Notice that we concatenated the two different cases (to spike or not to spike): when σi(t) = 0 őrst

term in the őrst factor becomes zero and when σi(t) = 1 second term in the őrst factor becomes zero.
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Taking the derivative of pi(t) depends on λi(t), which in turn is a function of fi, itself dependent on

Ii(t), and ultimately linked to wij . After rearranging the terms and taking the limit of △t to zero, that

can be followed in the paper [11], the őnal rule that is to be gated by the reward signal is:

eij =

∫ T

0

ï
(si(t)− fi(t))

fi(t)
f ′
i(t)

ò
hij(t) dt, (40)

where T is the episode length and si(t) is the post-synaptic spike train denoted by si(t) =
∑

a δ(t− fa
i ).

Investigating the update rule more closely, őrst, we notice that it is Hebbian. The terms encapsulated in

the brackets is only dependent on post-synaptic neuron, while hij(t) is only dependent on pre-synaptic

neuron.

Second, the update makes use of spike ŕuctuations. The term si(t)− fi(t), integrated over the time

period T, compares the number of spikes emitted by the post-synaptic neuron (si(t)) and the average

őring rate (fi(t)). Although the expected value of this difference is zero, the model exploits the

trial-by-trial ŕuctuations. Note that when number of neurons in the network increase, ŕuctuations will

decrease which would deteriorate the capability of the rule.

This ŕuctuation is scaled by the term f ′
i(t)/fi(t) (Figure 5). The authors noted that since the scaling

term decreases for large synaptic inputs, the term acts as a stabilizer. I would also like to note that

since the variance of the Poisson process is equal to its mean, the scaling term penalizes potential large

ŕuctuations while amplifying the impact of possible small ŕuctuations.

Figure 5: Scaling term, f ′
i(t)/fi(t). Figure from [11].

The authors used the online version of their algorithm to show the capabilities of their update rule, using

two different tasks: XOR problem and learning direction selectivity. For the XOR problem, the input

data is {[1,0],[0,1],[1,1],[0,0]} with {1,1,0,0} being their desired outputs. They constructed their network

with 2 input neurons, 10 hidden neurons, and 1 output neuron for the XOR problem. Input data 1 was

encoded by a Poisson spike train with a 200Hz rate, and 0 was encoded by a 5Hz rate. For instance,

for the input [1,1], both input neurons received a Poisson spike train with a 200Hz rate. The network

received a negative reward of R = -1 each time the output neuron őred a spike for the inputs [1,1] and

[0,0], and a positive reward of R = 2 each time the output neuron őred a spike for the inputs [0,1] and [1,0].

They found out that the network learns the XOR task (Figure 6) by balancing the excitation and

inhibition of the hidden neurons (Figure 7, b), i.e. each hidden neuron receives one excitatory input

from one input neuron and one inhibitory input from the other input neuron. However since there are

no constrictions on any input neuron’s projections, one neuron can excite one hidden neuron while

inhibiting the other hidden neuron (Figure 7, b).
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Figure 6: Firing rate of the output neuron given the input, during the learning process. The activity of
the output neuron becomes stronger for the inputs [0,1] and [1,0]. Figure from [11].

Figure 7: Initialized weights before training (A and C) and learned weights after training (B and D).
After training, each hidden neuron receives one excitatory and one inhibitory input, and each hidden
neuron uniformly excites the output neuron. Figure from [11].

For the input [0,0], intuitively, the output neuron naturally produces lowest őring rate even before

learning. The input [1,1], after the learning, since each hidden neuron receives one excitatory and one

inhibitory input, they cancel out, leads to a low őring rate of output neuron.

Additionally, to test whether their update rule also works when the network deviates from perfect

Poisson behavior, the authors implemented a spiking neural network consisting of leaky integrate-and-

őre (LIF) neurons. They demonstrated that LIF neurons were able to learn the solution to the XOR

problem. Interestingly, it appears from their őgures (comparing Fig. 7, c and Fig. 2, a from the paper

[11]) that learning with the LIF network was even faster than with Poisson neurons, but this might be

due to factors such as learning rate parameters of the network, which are not mentioned in the paper.
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Lastly, the authors provided examples from two different experimental studies [15, 16]. The őrst

paper [15] suggests an increase of synaptic strength when the pre-synaptic spike precedes the post-

synaptic spike, while the second paper [16] suggests a decrease in the same case (the latter, known

as anti-Hebbian behavior, has much less evidence than the őndings of the former work). The authors

mentioned that if the reward is őxed at a positive value, their rule would replicate the őndings of

the őrst paper. Conversely, if the reward is őxed at a negative value, their rule would replicate the

őndings of the second paper. Additionally, from a biophysical standpoint, for this plasticity rule

to be implemented by neurons, each neuron should be able to estimate its average őring rate, fi(t).

This is more feasible for a neuron if its input is slowly varying and less likely if the input changes instantly.

Notice the similarities between X. Xie and H. S. Seung’s update rule (Eq. 40) and Bartlett & Baxter’s

update rule (Eq. 34). The concept of updating synaptic strengths based on the correlation of a global

reward and a local Hebbian plasticity rule remains the same for both rules, as both are derived using

policy-gradient methods. X. Xie and H. S. Seung’s rule includes more biological dynamics, but it is

based on the assumption that neurons are producing Poisson spike trains, which is not always true for

biological neurons.

Also notice that Bartlett & Baxter’s and Xie & Seung’s rules have one more common behavior: They

both increase the synaptic strength if pre-synaptic spike precedes post-synaptic spike in the presence

of positive reward. On the other hand, Xie & Seung’s update rule also depends on the relative time

interval between the spikes due to the hij(t) function, therefore predicting the so-called causal part

of the STDP (LTP part, assuming positive reward): If the pre-synaptic spike is immediately followed

by a post-synaptic spike, the synaptic change is higher than compared to if the post-synaptic spike

occurs slightly later. In contrast, Bartlett & Baxter’s rule does not account for the relative time interval

between spikes, as it only implements the pre-synaptic neuron effect as a spike (uj
t−1, Eq. 34), rather

than a synaptic activation that spans time (hij(t), Eq. 40) as in Xie & Seung’s rule. Neither of the

papers found plasticity rules that account for the anti-causal part of the STDP rule.

In 2005 and 2006, R. V. Florian published two papers [17, 18] demonstrating that a similar update

rule can be mathematically derived for spiking neural networks without assuming Poisson statistics.

R. V. Florian also investigated the conditions under which the so-called anti-causal part of the STDP

might occur. I will primarily discuss the 2006 paper since it is more extensive and also delves into the

relationship between the learning rule and STDP more broadly.

In the 2006 paper [18], the author őrst employed the spike-response model (SRM) [19] with escape

noise [20] to model the spiking neurons. Given that the derivations closely resemble those in X. Xie

and H. S. Seung’s paper [11], with the main change being the neuron model (SRM instead of Poisson

neurons), and not the reinforcement learning algorithm (policy-gradient method), I will mention the

eligibility trace of the learning rule without providing its derivation. The eligibility trace is determined

to be gated by the reward as before. The learning rule below is not an offline rule as given in Equation

40 but an online rule.

deij
dt

= −
eij
τe

+
g′(ui(t))

g(ui(t))
[Yi(t)− ρi(t)]

∑

fa
i
∈xj,t

ϵ(t− fa
i ) (41)

where g(ui) is a function that increases with the membrane voltage ui, similar with f(Ii(t) in Eq. 40.

Yi(t) is the spike train of post-synaptic neuron, exactly the same as si(t) in Eq. 40.
∑

fa
i
∈xj,t

ϵ(t− fa
i )

is the kernel for pre-synaptic effect on post-synaptic neuron, similar with hij(t), where xj,t denotes
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the pre-synaptic spike times before the present time t. Finally, τe is the time-scale for the eligibility trace.

Notice that this derived rule is also not accounting for the anti-causal part of the STDP, like Bartlett

& Baxter’s [9] and Xie & Seung’s rules [11]. Consider this case to see why so far derived rules cannot

include the anti-causal part of the STDP by their construction: Assume one post-synaptic neuron that

őred at time tpost. Also consider one pre-synaptic neuron that connects to the post-synaptic neuron

and őres at times tpre1 and tpre2, where tpre1 < tpost < tpre2. The modeled neurons, a Bernoulli unit

for Bartlett & Baxter’s paper, a Poisson neuron for Xie & Seung’s paper, and an SRM model for R. V.

Florian’s model [18], only model the voltage membrane of a neuron. Considering a post-synaptic neuron,

only the pre-synaptic inputs that arrived before the present time can affect the voltage membrane.

Since we derive the rule by taking the derivative of the expected reward with respect to the synaptic

weights between pre- and post-synaptic neurons, and since only the effects of pre-synaptic neuron

spikes before the present time are multiplied by the weight, the only contribution of pre-synaptic inputs

to the learning rule is the inputs that arrive before the present time. By construction of the models,

pre-synaptic neurons that occur after the present time cannot have an effect on the post-synaptic

neuron membrane potential. In other words, the spike at tpre2 can not affect the post-synaptic neuron

at time tpost, but only spikes before the tpost, so, in our example, tpre, may effect the post-synaptic

neuron. However, STDP curves that are őtted to data, and different types of implementations such

as all-to-all, nearest-neighbor, post-synaptic centric, pre-synaptic centric STDP rules [21], they allow

so-called anti-causal effects of pre-synaptic neuron.

After deriving a plasticity rule that does not rely on Poisson statistics, R. V. Florian also demonstrated

that if the spiking model is extended to account for homeostatic plasticity, the derived rule results in the

anti-causal part of the STDP as well. Homeostatic plasticity can be deőned as a regulation mechanism

that acts to stabilize the neuronal activity. There are different mechanisms for homeostatic plasticity

[22, 23]. In the paper, he used the version in which pre-synaptic neurons adapt their spiking thresholds

to maintain the mean rate of the post-synaptic neuron constant. This implies that a pre-synaptic

neuron increases (decreases) its őring threshold if the őring rate of the post-synaptic neuron increases

(decreases), thereby trying to keep the post-synaptic neuron activity constant.

In that case, the policy does not only depend on the őring probability of the post-synaptic neuron

(notice that in Eq. 39, we only take the derivative of pi(t), which is the post-synaptic őring probability,

with respect to synaptic strength) but also on the őring probability of the pre-synaptic neuron,

since the activity of pre-synaptic neurons also depend on synaptic strength in the extended spiking

model. For an analytical derivation of the rule, I refer the reader to the original paper [18]. Simply,

the derived plasticity rule can still be interpreted as correlations between the global reward and

(a combination of different) local plasticity rules, as shown in the general formula in Equation 28:

△wij = f1(prej)f2(posti)f3(reward).

4.2 Reward-modulated STDP

As mentioned, incorporating the homeostatic plasticity to the spiking neuron model enables both the

causal and anti-causal parts of the STDP. However, unlike the commonly used STDP rules [6], the

derived rule also depends on the őring rate intensity parameter g(ui(t)) of the SRM model. The author

claims that the dependence on this intensity parameter is not experimentally justiőed. For this reason,

among others, the author also proposed a learning rule in which the global reward directly modulates

the eligibility trace determined by the STDP rule. Note that, different from all the other previously

mentioned learning rules, this rule is not derived with a top-down approach and not analytically derived.
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The author claimed that reward-modulated STDP rule can be seen as a simpliőed version of the

analytically derived rule.

In reward-modulated STDP, the eligibility trace increases if pre-synaptic spike precedes post-synaptic

spike, and decreases if post-synaptic neuron precedes the pre-synaptic spike. The increase and decrease

amount is determined by the time interval of the two spikes, obeying the STDP rule. The eligibility

trace is gated by the reward to induce changes in synaptic weights.

wj,t+1 = wj,t + αRt+1zj,t+1, (42)

zj,t+1 = βzj,t + si(t)A+

∑

j,a

e
(−

t−fa
j

t+
)
+ sj(t)A−

∑

i,a

e
(−

t−fa
i

t
−

)
(43)

The second and third term in the right-hand side of the eligibility trace equation is one of the ways

of implementing the STDP rule in an efficient way. A+ and A− determines the maximum synaptic

update when the time interval is equal to zero, while t+ and t− determines the time-scales for which

synaptic-change occur. Effects of pre-then-post pairs are accumulated in the őrst sum, and post-then-pre

pairs are in the second sum. As before, si(t) and sj(t) are denoting the spike trains of post- and

pre-synaptic neurons, respectively.

Notice that in reward-modulated STDP, when the reward is positive the STDP curve is what is called

Hebbian STDP (Figure 2), while when the reward is negative it is called Anti-Hebbian STDP. It

is shown that [24] the Hebbian STDP rule minimizes the variability of post-synaptic őring, while

anti-Hebbian STDP maximizes the variability [25]. The author claimed that reward-modulated STDP

rule decreases the variability of the post-synaptic neuron when the reward is positive, allowing the

network to exploit a particular conőguration that facilitates learning, while enabling exploration of

other conőgurations by increasing the variability of the post-synaptic neuron when the reward is negative.

R. V. Florian simulated the reward-modulated STDP rule for the XOR problem with rate-coded input

(similar to the previously mentioned XOR problem setting) and demonstrated that the network was

able to solve the XOR problem. The author also applied the algorithm to the XOR problem with

temporally coded input, coding 0 and 1 as two distinct spike patterns while maintaining equal őring

rates, and showed that algorithm successful solved the temporal-XOR problem. Moreover, the author

illustrated that the network can also learn a target őring-rate pattern coded by individual őring rates

of each output neuron. In this case, the reward was provided to the network for each time step by

comparing the distance between the output neurons’ pattern and the target pattern.

To investigate the contributions of causal and anti-causal parts of STDP for learning őring-rate patterns,

the author systematically varied the parameters A+ and A−. Interestingly, when eligibility traces were

used, the network was only able to learn the desired őring pattern when A+ and A− was equal, causal

and anti-causal parts contributing equally. However, the author also tried the algorithm without using

eligibility traces (i.e. β = 0). In that case, the network was able to learn the patterns irrespective of

A− (whether it’s equal to 0, A+, −A+), given that the A+ is positive, suggesting the importance of

the causal part of STDP (i.e., pre-synaptic spike preceding post-synaptic spike increases the weights if

the reward is positive and decreases the weights if the reward is negative).

The effect of delayed rewards has also been investigated by the author. If the reward was provided

to the network with delays, the rule with eligibility traces was still able to learn the task, but with
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decreasing learning efficacy for increasing reward delays between 0ms and approximately 10ms. It is

crucial, however, that the decay rate of the eligibility trace should be large compared to the mixing

time of the system. Mixing time of the system can be loosely interpreted as the time interval between

the initiation and termination of the effect of action initiation [9, 18]. Nevertheless, increasing the de-

cay rate too much would make the gradient estimate more noisy, which deteriorates learning efficacy [11].

Lastly, the author also discussed the effect of network size on learning efficacy. It is demonstrated that

learning efficacy decreases as the network size increases, which can be considered an intrinsic property

of the learning rule since the rule exploits the ŕuctuations of spikes, and these ŕuctuations become less

pronounced with larger network sizes. It is also shown that the learning efficacy is even more affected

by the network size with the rule that uses eligibility traces (Figure 8).

Figure 8: Learning efficacy with respect to network size for the algorithms with or without eligibility
trace. Figure from [18], edited.

To conclude, R. V. Florian extended the previously mentioned rules by using the SRM model. Im-

portantly, the author drew attention to the similarities between the classical STDP rule and the

local Hebbian part of the analytically derived rule. It is claimed that using the STDP rule, which

has direct experimental evidence, instead of the derived local Hebbian rule, can also be effective for

learning. Finally, they reiterated the speculations of Xie & Seung’s, hypothesizing that in classical

STDP experimental setups, the reward signal might have been őxed during the experiments. They

suggested more experimental work to investigate the biological plausibility of the reward-modulated

STDP.

Similar to the őndings of R. V. Florian, homeostatic mechanism giving rise to anti-causal part of STDP,

J. P. Pőster et al. [26] found that the anti-causal part of STDP emerges if the post-synaptic neuron

activity is optimized for inducing a spike at a desired time given the constraint of keeping its őring rate

constant. The authors deőned the desired őring time by inducing a reward signal for spikes that őred

at that time.

In 2007, E. M. Izhikevich also introduced a model that uses reward-modulated STDP [27]. In previous

works, the weights of the pre-synaptic neurons were not constrained; that is, they were able to change

their sign during the learning procedure, and one pre-synaptic neuron was able to excite one post-

synaptic neuron while inhibiting another, thereby violating Dale’s law. By explicitly using excitatory
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and inhibitory neurons, E. M. Izhikevich showed that the reward-modulated STDP also works for

the networks that obey Dale’s law. The author used a recurrent spiking neural network consisting of

excitatory and inhibitory neurons, and only used the STDP rule for excitatory neurons as suggested by

experiments [28]. The idea was the same with previously mentioned papers, modulating the STDP

with a global broadcasting reward (Figure 9).

The author selected 100 different groups of neurons, each consisting of 50 neurons. All the groups

were simulated consecutively, but the delayed reward was administered only after stimulating the a

priori chosen group. Stimulating the groups increases the activity of neurons (pre-synaptic), which,

in turn, increases the activity of projected neurons (post-synaptic). Since the dopamine level is only

increased (with a random delay between 1 and 3 seconds) after stimulating the chosen group, the

synaptic strength between the neurons of the chosen group and their projections increases due to the

pre-then-post order. When the reward is not administered after the stimulation of other groups, since

dopamine has a tonic level, these connections also slightly increase. However, it’s important to note

that the area of LTD is greater than LTP (Figure 9, b) in the used STDP rule, which decreases the

synaptic strength of uncorrelated pairs of two neurons [29, 6], compensating for the slight potentiation

of other neurons.

Differently from previously mentioned papers, the author explicitly related the reward with extracellular

dopamine, and he also claimed that the autophosphorylation of CaMK-II or oxidation of PKC or PKA

may implement the eligibility trace [30].

Figure 9: a) The synaptic strength shown by s and the eligbility trace shown by c determines the
dynamics of a synapse. b) Used STDP rule. c) Coincident őring of pre-then-post neurons sets the
eligibility trace together with the delayed reward determines the synaptic strength change.

In 2007, M. A. Farries and A. L. Fairhall [31] also investigated the capabilities of reward-modulated

additive and multiplicative STDP models. The authors demonstrated that using a reward-modulated

STDP rule together with homeostatic plasticity rule has a better learning efficacy compared to when

homeostatic plasticity rule is not used. The authors tried different homeostatic plasticity rules, one simi-

lar to what R. V. Florian used and another that was different. They concluded that both of the distinct

homeostatic plasticity has similar effects on learning efficacy. They also claimed, with simulations, that

the network is able to learn the previously mentioned tasks even when only the causal part of the STDP

is used. In fact, they also showed that the anti-causal part is deteriorating the learning efficacy. They
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claimed that there are no reasons for both the causal and anti-causal parts of the STDP to have the same

functional roles. They brieŕy touched on the experimental őndings that the biological mechanism of dif-

ferent parts of STDP is different [32], suggesting the possibility that they might be modulated separately.

The authors also discussed the potential circuitry and mechanisms that would enable the global reward

broadcasting. The midbrain neurons that releases dopamine could be a good candidate (note that

they do not encode the reward itself but the TD signal), but these neurons mostly innervates striatum.

Although it is still yet debated how, it is known that dopamine indeed modulates the plasticity in

striatum [31]. But it is also known that the isocortex receives much less dopaminergic input. The

authors claimed that the another source of dopamine response for reward-prediction could be the basal

ganglia, which widely outputs to isocortex, which would enable global reward broadcasting to the cortex.

In 2008, R. Legenstein et al. analytically investigated the reward-modulated additive STDP rule,

assuming Poisson neurons [33], and also demonstrated the capability of the reward-modulated additive

and multiplicative STDP through simulations with LIF neurons. One interesting modeling attempt in

this paper is the ’biofeedback’ experiment. In this experiment, the authors recorded the őring rate of a

monkey’s single neuron, and showed it to the monkey, and the monkey is rewarded when it was able

to increase the őring rate of that particular neuron [34]. The monkey was able to learn the task in a

few minutes. The authors also showed that the monkey is also able to learn to separately increase and

decrease the activity of two different neurons that are spatially separated by a few hundred microns

[34]. The authors showed that the network endowed with reward-modulated STDP, when the reward is

a function of the őring rate of a chosen neuron (Figure 10), was indeed able to learn (Figure 11) the

biofeedback task.

The reward signal d(t) is provided to the whole network (Figure 10, a) using the reward kernel (Figure

10, c) according to the őltered spike train of the chosen neuron (Figure 10, b).

Figure 10: a) The reward signal given to whole neuron population is dependent on the chosen neuron.
b) Spike train of the chosen neuron determines the reward signal. c) A demonstration of the eligibility
trace (black line) multiplied by the reward kernel (red line) which gives the synaptic strength change
(blue line). Figure from [33].

Figure 11 shows the raster plot of a part of the network before (left panel) and after (right panel)

learning. The neuron whose activity was desired to be reduced is shown by green, and another neuron

activity to be increased is shown by blue.
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Figure 11: Left: Raster plot of a subsampled network for 3 seconds before learning. Right: Raster plot
of a subsampled network for 3 seconds after learning. The activity of neuron shown in blue is increased
while green is decreased as the learning rule dictates. Figure from [33].

The authors claimed that since reward-modulated STDP rule requires spontaneous activity of the

network together with trial-to-trial variability, it may provide a functional explanation for these two

commonly observed features of cortical neurons.

Up to this point, I have attempted to summarize papers that: 1) utilize policy-gradient methods to ana-

lytically derive a learning rule for various neuron models (including the Bernoulli unit, Poisson neuron,

and SRM model), 2) explore the relationship between analytically derived rules and reward-modulated

STDP rules, and 3) investigate the efficacy of reward-modulated STDP.

One more interesting connection between a plasticity rule and RL framework was studied by D. Baras

and R. Meir in 2007 [35]. Similarly to the other papers mentioned, they derived a plasticity rule by

applying a policy-gradient method to a spiking neuron model. They considered the average behavior

of their plasticity rule by taking the expectation over a temporal window to convert the individual

spikes to rates. To do that, they assumed two statistical properties for a pre- and post-synaptic neuron.

1-) The pre-synaptic neuron őres according to a homogeneous Poisson process. 2-) The post-synaptic

neuron őres according to an inhomogeneous Poisson process that is modulated by the pre-synaptic

effect. Under these conditions, they showed that based on a threshold, LTD and LTP may occur. They

found that the threshold increases linearly with the pre-synaptic neuron activity, and the expected

weight change is similar to the BCM rule qualitatively (Figure 12). It is noteworthy to mention that

the BCM and STDP relationship has been also studied [30].

Figure 12: Weight change (shown by the y-axis) with respect to post-synaptic őring rate. Three
different threshold cases are shown for different pre-synaptic rates. Figure from [35].

In 2009, E. Vasilaki showed the situations in which policy-gradient methods fail [8]. They considered

the Morris Water maze task, in which the agent is placed in opaque water and tries to őnd the hidden
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platform just below the water, which would be rewarding since it ends an inconvenient experience.

They assumed that the pre-synaptic neurons are place cells, which encode the spatial location of the

agent. These place cells project to hypothetical action cells and the action cells are also connected to

other action cells via lateral projections (Figure 13). Due to the lateral connections, an activity bump

occurs in action cells, which would determine the next place the agent goes. The agent is re-initiated

from a random place in the maze if it reaches the hidden platform (which is őxed in different trials), or

if it hits the wall or exceeds the predetermined trial duration. The authors showed that policy-gradient

methods are unable to learn the location of the hidden platform and claimed that one of the reasons is

that the action taken in their model is chosen by a rate code of the action cells but not the temporal

patterns, which is a suitable learning paradigm for policy-gradient methods.

Figure 13: a) Overview of the network. Location of the agent algorithmically determines the őring
rates of place cells, which have an all-to-all connections to action cells. Action cells determines the
direction of the next movement. b) Activity of action cell population, notice the activity bump after
25ms. c) Firing pattern of place cells denoted by 1 and 2.

The authors showed that a simpler Hebbian rule (hard bounded from above to avoid unstability) that

gated by the reward is able to learn the task, while policy-gradient methods fail as expected. They

introduced a new variable τc to the Equation 39, extending the rule shown in Equation 41.

deij
dt

= −
eij
τe

+
g′(ui(t))

g(ui(t))

ï
Yi(t)−

ρi(t)

1 + τcρi(t)

ò
∑

fa
i
∈xj,t

ϵ(t− fa
i ) (44)

Notice that when τc = 0, the learning rule becomes the policy-gradient rule, and when τc goes to

inőnity, the rule becomes a reward-modulated simpler Hebbian plasticity. The authors showed that

setting τc = 5ms makes the rule able to learn the task since it introduces a bias toward the Hebbian

rule. They showed that the agent was able to learn the task in approximately 20 trials, which they

claimed is also the case in experiments for the water maze task [36]. In Figure 14, they showed the

decrease in escape latency, deőned as the time until the agent reaches the hidden platform in each trial,

for different conőgurations of the network.
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Figure 14: Left panels are showing the escape latency with respect to number of trials. Right panels
are showing the formed navigation map after 20 trials.

The authors also pointed out two properties of their model. First, increasing the number of action cells

does not signiőcantly reduces the learning efficacy, which is intuitive since the rate coding is used as

a readout. Second, increasing the area of the maze would decrease the efficacy since the correlation

between eligibility trace and reward would diminish if the agent takes too much time before receiving

the reward.

In conclusion, gating the STDP rule by a reward signal in theory can be implemented by spiking neural

networks for learning purposes. It is not an analytically derived rule as the rules mentioned in Section

4.1, therefore it is not guaranteed that the update rule is in the direction of reward maximization,

but it appears to be more biologically plausible. The rule enables networks to learn speciőc temporal

patterns, and solve simple tasks such as XOR problem. These papers suggests for further experimental

plasticity studies including neuromodulators, which would be one of the potential candidates for reward

signaling. For a review study that shows some evidence for eligibility traces and neuromodulator-gated

plasticity, see [37].

4.3 Applying temporal-difference learning in spiking neural networks

As written in Section 2.3, temporal-difference learning uses an error, δ(s), to update the weights (Eq.

16). In 2001, R. P. N. Rao and T. J. Sejnowski used a two-compartment model, including the dendrite

compartment and soma-axon compartment [38]. The pre-synaptic spike input is given to the dendrite

compartment of the neuron with different time points, before or after the post-synaptic spike. In the

model, the post-synaptic neuron is denoted as vt =
∑

i w(i)xt(i), where xt(i) is a pre-synaptic input

and w(i) is a synaptic weight. Notice that it corresponds to deőning the states with linear features, as

denoted in Section 2.3. The synaptic weight is changed according to the temporal-difference learning

rule. By setting the γ = 1 and Rt+1 = 0 in Equation 15, the synaptic update becomes:

wt+1 = wt + α(vt+1 − vt)xt. (45)
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By őxing the pre-synaptic spike time and changing the post-synaptic spike time (Figure 15, a and

b), thus, changing the time interval between the spike pairs, they measured the weight change curve

governed by the TD learning, and showed that it is qualitatively similar with the STDP rule (Figure

15, c).

Figure 15: a) Pre-synaptic spike is shown by S1. The post-synaptic spike elicited 5 ms after the
pre-synaptic spike. The weight change is shown before (top) and after (bottom) the pairing procedure.
b) Same as a, but the post-synaptic spike elicited 5ms before the pre-synaptic spike. Pre-synaptic spike
is shown by S2. c) By changing the time interval (in a and b it was 5ms) they calculated the weight
change curve. Observed curve is qualitatively similar with the STDP rule. Figure from [38].

To conclude, the authors demonstrated that the STDP rule can be understood as a type of TD learning

for prediction. They also implemented a network architecture to show how a network using TD learning

rule can learn to predict input patterns.

The TD learning can also be used for the control problem, i.e., őnding the optimal policy, rather than

őnding the value, which is be the prediction problem. Using actor-critic temporal-difference learning,

in 2008, D. D. Castro et al. published a paper [39] in which they derived a plasticity rule using SRM

model, similarly with R. V. Florian’s paper [18]. Different from other works that mentioned in Section

4.1, they used the TD error to gate the local Hebbian plasticity rule for actor neurons, instead of the

reward itself. Critic neurons also received TD error which they use it for a simple linear function

approximation method for updating the states (membrane voltage) of the neurons (identical to Equation

17). They demonstrated the learning capability of their plasticiy rule using a navigation task, I refer

the reader to the original paper for further details. This top-down approach is quite similar with using

policy-gradient methods to derive a plasticity rule, instead, they used actor-critic temporal-difference

framework.

W. Potjans and A. Morrison also suggested plasticity rules that implements the actor-critic temporal-

difference (AC-TD) framework in spiking neural networks [40]. Differently from the paper by D. D.
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Castro et al., they did not derive the model using a top-down approach, but they suggested engineered

plasticity mechanisms that would correspond to AC-TD framework. The authors named their plasticity

rules as state-critic plasticity rule and state-actor plasticity rule and showed that their plasticity rule

reaches similar learning efficacy with the non-spiking models of the AC-TD algorithm.

5 Discussion

In this report, I have investigated some plasticity rules that are inspired by the RL framework. The

application of policy-gradient methods has resulted in the formulation of reward-modulated Hebbian

plasticity rules. Since the derived Hebbian rule shared similar properties with the experimentally

observed STDP rules, it paved the way of investigation of reward-modulated STDP rules. Moreover,

it has been also shown that using TD error to modulate Hebbian rules can also be implemented by

spiking neural networks. I believe that studying such top-down approaches to derive plasticity rules

may facilitate the experimental studies by suggesting different experimental setups, which, in turn,

re-iterates the theoretical studies, closing the theory-experiment loop.

On the other hand, in this report, all the RL-inspired plasticity rules that is discussed shares similar

properties, and they can be shown in a general formula:

△wij = f1(prej)f2(posti)
︸ ︷︷ ︸

Local

f3(reward)
︸ ︷︷ ︸

Global

This form is also called three-factor learning rule [37], since there exist three different factors that

determine the weight change: pre-synaptic neuron activity, post-synaptic neuron activity, and a global

signal. However, this general formula is not the only possible way of incorporating the reward signal

into the established Hebbian rules. There is a piece of experimental evidence which show that dopamine

increases the excitability of D1 receptor-expressing striatal projection neurons [41]. This case can be

shown in another general formula:

△wij = f1(prej)f2(posti, reward) (46)

where a reward signal directly effects the activity of the post-synaptic neuron, rather than gating

the Hebbian rule governed by pre- and post-synaptic activities. There may also exist different ways

for reward signal to act on plasticity, and I believe it is more likely that the brain recruits various

mechanisms for distinct learning paradigms, rather than only exploiting a universal learning mechanism.

For example, it is known that pure Hebbian learning rules (not effected by any global reward signal)

are able to successfully implement various unsupervised learning settings, such as novelty responses [42],

principal component learning [43], orientation speciőcity [5]. I believe that studying the interactions

of pure Hebbian rules and reward modulated Hebbian rules, coupled with an investigation into how

different brain areas are recruiting distinct learning paradigms, may further facilitate our understanding

of animal learning.
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