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Take-home Messages

• Training spiking neural networks on simple discrimination tasks shapes
the neural tuning curve of the upstream neuron.

• A simple selectivity task leads to E/I anti-tuning, and also to E/I balance
if a constraint is put on the post-synaptic firing rate.

• A novelty selectivity task is much harder to train, but leads to E/I co-
tuning.

Model Structure

The feedforward network consisted of 5 input neuron groups, each includ-
ing 100 excitatory and 25 inhibitory neurons. These pre-synaptic neurons
project onto a single current-based post-synaptic neuron. Excitatory inputs
have faster time-scale than the inhibitory inputs.
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An MLP classifier is given the spike counts of the post-synaptic neuron for dif-
ferent stimuli and is trained to identify the corresponding input group. The
loss function is a sum of cross entropy and MSE, accounting for the classifica-
tion loss and firing rate of the post-synaptic neuron. Feedforward connections
are trained using via surrogate gradient learning [1].

Simple Selectivity Task

In this task only one of the input groups are active during any stimuli time-
window, which is set at 100ms. The activity of the pre-synaptic neurons, and
the accuracy-loss during the learning phase are shown below.

100ms

G5

G4

G3G3

G2

G1

Mean acc. across trials

A
cc

ur
ac

y

Acc. for each trial

The classifier has to learn which one of the input groups was active during the
corresponding time-window of the stimuli. It easily achieves that by adjust-
ing the feedforward weights such that each input group causes different spike
counts during their time-window. The networks prefers anti-tuning. This type
of connectivity has been investigated in theoretical studies [2] and can emerge
via synaptic plasticity mechanisms. Spike counts caused by input groups are
distinct as shown below, and therefore the readout classifier is able to distin-
guish the different groups.
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Increasing the constraint on the post-synaptic firing rate forces E/I balance,
which is consistent with previous claims about efficient coding [3], but is detri-
mental to task accuracy if increased too much.

Novelty Selectivity Task

In this task, a novel input group becomes active at the middle of the previous
input, shown on the figure with bold text. Novel input stays active for 200ms.
Readout is only fed the post-synaptic spike counts during the novel stimuli.

In this case the post-synaptic neuron has to identify the input groups that was
active during the corresponding time-window of the novel stimuli. This can
only be done if the excitatory and inhibitory inputs cancel each other after
some time, before the novel input arrives. E/I co-tuning is necessary to solve
this problem [4].
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In our experiments we did not observe consistent co-tuning and high accuracy,
although we were able to find a parameter space that leads %100 accuracy
with detailed balance setting, with each input group causing distinct spike
counts. Here we show one of the examples of resulting co-tuning, which leads
to relatively noisy post-synaptic responses.

Observations

• Training for distinguishing novel inputs in the continuous presence of
other inputs is significantly harder than for individual inputs and leads
to different connectivity patterns.

• Unlike the simple selectivity task which can be solved for a large range
of initial conditions, the harder novelty selectivity task requires initializa-
tions within a narrower, biologically plausible range.

• While training for the simple selectivity task does not lead to E/I balance
without a constraint on the firing rate, in the novelty task balance emerges
organically, without additional constraints..

Future Work

• Improving accuracy on the novelty selectivity task and examining the im-
plications of having multiple input groups given at any time. Also, the
addition of noise on the post-synaptic neuron might change some of our
results.

• We aim to investigate whether different plasticity rules that are known to
produce E/I co-tuning and anti-tuning can result in near-optimal connec-
tivities and identify the plasticity parameters that improve performance
in such tasks.

• Finally, we plan to investigate how inputs from recurrent networks with
different topologies can be distinguinshed by a post-synaptic neuron via
different feedforward connectivity patterns.
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